IPRI - www.ipri.kiev.ua -  IPRI - www.ipri.kiev.ua -
Title (journal) Data Rec., Storage & Processing. — 2006. — Vol. 8, N 1.
Pages 103-113
PDF,DOC, full text
Title (article) Solution of the Inverse Task of Chaotic Dynamics as the Most Effective Method of the Analysis of an Open Key Cryptography System
Authors Kostenko P.Yu., Antonov A.V., Sivaschenko S.I.
Kiev, Ukraine
Annotation The approach to providing security of information in computer systems and networks based on chaotic systems is considered. The open key cryptography system, which functions as a chaotic dynamic system, is proposed. It is shown that the most effective method of a cryptanalysis of the offered system is based on a solution of the inverse task of chaotic dynamics and has exponential dependence of complexity on a key length. Refs: 17 titles.
Key words open key cryptography, chaotic dynamics, inverse task of chaotic dynamics, complexity of a cryptanalysis.
References 1. Птицин Н.И. Приложение теории детерминированного хаоса в криптографии. — М.: МГТУ, 2002. — 79 с. ил.
2. Kocarev L. Chaos-Based Cryptography: A Brief Overview // IEEE Circuits and Systems Maga-zine. — 2001. — Vol. 1. — P. 6–21.
3. Kocarev L., Tasev Z. Public-Key Encryption Based on Chebyshev Maps // Proc. IEEE Symp. on Circuits and Systems (ISCAS-2003). — 2003. — Vol. 3. — P. 28–31.
4. Masuda N., Aihara K. Cryptosystem With Discretized Chaotic Maps // IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications. — 2002. — Vol. 49. — N 1. — P. 28–39.
5. Kotulski Z., et. al. Application of Discrete Chaotic Dynamical Systems in Cryptography — DCC Method // International Journal Bifurcation and Chaos. — 1999. — Vol. 9. — P. 1121–1135.
6. Diffie W., Hellman M. New Directions in Cryptography // IEEE Transactions on Information Theory. — 1976. — Vol. 22. — P. 644–654.
7. Rivest R., Shamir A., Adleman L. A Method for Obtaining Digital Signatures and Public Key Cryptosystem // ACM Communications. — 1978. — Vol. 21. — P. 120–126.
8. Федеральный стандарт обработки информации FIPS PUB 186 // NIST USA. — 1996.
9. ElGamal T. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms // IEEE Transactions on Information Theory. — 1985. — Vol. 31. — P. 469–472.
10. Schnorr C. Efficient Identification and a Signatures for Smart Card // Journal of Cryptology. — 1991. — N. 3.
11. Koblitz N. Elliptic Curve Cryptography // Math. Comput. — 1987. — Vol. 48. — Р. 203–209.
12. Cowie J., et al. A World Wide Number Field Sieve Factoring Record: On to 512 Bits // Proc. ASIACRYPT’96. —1996, Nov.
13. Odiyzko A. The Future of Integer Factorization // CryptoBytes. — 1995, Sum.
14. Wiener M. Cryptanalysis of Short RSA Secret Exponents // IEEE Transactions on Information Theory. — 1990. — Vol. IT-36.
15. Kotulski Z., et. al. On Constructive Approach to Chaotic Pseudorandom Number Generator // RCMCIS. — 2002.
16. Шустер Г. Детерминированный хаос: Пер. с англ. — М.: Мир, 1985. — 255 с. ил.
17. Столингс В. Криптография и защита сетей: принципы и практика. — 2-е изд.: Пер. с англ. — М.: Издательский дом «Вильямс», 2001. — 672 с. ил. — Парал. тит. англ.
File statja.doc