IPRI - www.ipri.kiev.ua -  IPRI - www.ipri.kiev.ua -
Title (journal) Data Rec., Storage & Processing. — 2006. — Vol. 8, N 4.
Pages 53-63
PDF,DOC, full text
Title (article) Measures and Estimations for Block Ciphers Security against First Order Statistical Attacks
Authors Aleksejchuk А.N., Shevtsov A.S.
Kiev, Ukraine
Annotation Analytical upper estimations of the success probability of a distinguishing and, consequently, a «breaking» first order statistical attack on block ciphers are obtained. These estimations form a foun-dament for the definition of measures that characterize provable security of block ciphers against generalized linear, bilinear and some other cryptanalysis techniques. For the case of linear distinguishing attack, the obtained estimation of block ciphers security is more accurate that the previous well-known estimation. Refs: 15 titles.
Key words information cryptographical security, block cipher, provable security, statistical attack, statistical test.
References 1. Biryukov A. Block Ciphers and Stream Ciphers: the State of the Art // http://eprint.iacr.org/2004/094.
2. Vaudenay S. Decorrelation: a Theory for Block Cipher Security // J. of Cryptology. — 2003. — Vol. 16, N 4. — P. 249–286.
3. Wagner D. Towards a Unifying View of Block Cipher Cryptanalysis // Fast Software Encryption. — FSE’04, Proceedings. — Springer Verlag, 2004. — P. 116–135.
4. Vaudenay S. On the Security of CS-Cipher // Fast Software Encryption. — FSE’99, Proceedings. — Springer Verlag, 1999. — P. 260–274.
5. Junod P. On the Optimality of Linear, Differential and Sequential Distinguishers // Advances in Cryptology — EUROCRYPT’03 — Springer Verlag, 2003. — P. 17–32.
6. Baigneres T., Vaudenay S. Proving the Security of AES Substitution-Permutation Network // http://lasecwww.eptf.ch./php_code/publications.
7. Biham E, Shamir A. Differential Cryptanalysis of DES-Like Cryptosystems // J. of Cryptology. — 1991. — Vol. 4, N 1. — P. 3–72.
8. Matsui M. Linear Cryptanalysis Methods for DES Cipher // Advances in Cryptology — EUROCRYPT’93, Proceedings. — Springer Verlag, 1994. — P. 386–397.
9. Harpes C., Kramer G.G., Massey J.L. A Generalization of Linear Cryptanalysis and the Ap-plicability of Matsui’s Piling-up Lemma // Advances in Cryptology — EUROCRYPT’95, Proceedings. — Springer Verlag, 1995. — P. 24–38.
10. Harpes C., Massey J.L. Partitioning Cryptanalysis // Fast Software Encryption. — FSE’97, Proceedings. — Springer Verlag, 1997. — P. 13–27.
11. Courtois N.T. Feistel Schemes and Bi-Linear Cryptanalysis // Advances in Cryptology — CRYPTO’04, Proceedings. — Springer Verlag, 2004. — P. 23–40.
12. Junod P. On the Complexity of Matsui’s Attack // Fast Software Encryption. — FSE’01, Proceedings. — Springer Verlag, 2001. — P. 199–211.
13. Логачев О.А., Сальников А.А., Ященко В.В. Булевы функции в теории кодирования и криптологии. — М.: МЦНМО, 2004. — 470 с.
14. Chabaud F., Vaudenay S. Links Between Differential and Linear Cryptanalysis // Advances in Cryptology — EUROCRYPT’94, Proceedings. — Springer Verlag, 1995. — P. 356–365.
15. Keliher L., Meier H., Tavares S. Improving the Upper Bond on the Maximum Average Linear Hull Probability for Rijndael // Selected Areas in Cryptography. — SAC 2001. — Proceedings. — Springer Verlag, 2001. — P. 112–128.
File RZOD1_06.doc