IPRI - www.ipri.kiev.ua -  IPRI - www.ipri.kiev.ua -
Title (journal) Data Rec., Storage & Processing. — 2011. — Vol. 13, N 1.
Pages 67-77>
PDF,DOC, full text
Title (article) Synthesis of Diagnostic Models for Binary Data Based on Negative Selection
Authors Zaitsev S.A., Subbotin S.A.
Kiev, Ukraine
Annotation Negative selection methods suitable for the synthesis of diagnostic models for binary data are analyzed. Binary matching rules used in the negative selection are investigated. A modified negative selection method with censoring is proposed. It allows to increase detector generation speed and provide high accuracy of the diagnostics. Fig.: 2. Refs: 14 titles.
Key words artificial immune system, negative selection, binary matching rules, detector, diagnostic model.
References 1. Dasgupta D. Artificial Immune Systems and Their Applications / Ed. D. Dasgupta. — New York: Springer-Verlag, 1998. — 306 p.
2. Ji Z. Revisiting Negative Selection Algorithm / Zhou Ji, Dipankar Dasgupta // Evolutionary Computation. — 2007. — Vol. 15, N 2 (Summer). — P. 223–251.
3. Forrest S. Self Nonself Discrimination in a Computer / S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri // The 1994th IEEE Symposium on Research in Security and Privacy: proceedings, 1994, California. — Los Alamitos: IEEE Computer Society Press, 1994. — P. 202–212.
4. Dasgupta D. Artificial Immune Systems in Industrial Applications / D. Dasgupta, S. Forrest // The International Conference IPMM’99: Proceedings, 10–14 of July, 1999, Honolulu, Hawaii, USA. — New York, USA: Wiley Computer Publishing, 1999. — P. 121–135.
5. Gonzalez F. The Effect of Binary Matching Rules in Negative Selection / F. Gonzalez, D. Dasgupta, J. Gomez // Genetic and Evolutionary Computation Conference: proceedings, 9–11 of July, 2003, Chicago (USA). — Berlin-Heidelberg: Springer-Verlag, 2003. — P. 195–206.
6. D'haeseleer P. An Immunological Approach to Change Detection: Algorithms, Analysis, and Implications / P. D'haeseleer, S. Forrest, P. Helman // The 1996th IEEE Symposium on Computer Security and Privacy: proceedings, 6–8 of May, 1996, Oakland. — Los Alamitos: IEEE Computer Society Press, 1996. — P. 110–119.
7. Balthrop J. Coverage and Generalization in an Artificial Immune System / J. Balthrop, F. Esponda, S. Forrest, M. Glickman // Genetic and Evolutionary Computation Conference: proceedings, 9–13 of July, 2002, New York, USA. — San Fransisco, USA: Morgan Kaufmann, 2002. — P. 3–10.
8. Farmer J. The Immune System, Adaptation, and Machine Learning / J. Farmer, N. Packard, A. Perelson // Physica D: Nonlinear Phenomena. — 1986. — Vol. 2. — P. 187–204.
9. Harmer P.K. An Artificial Immune System Architecture for Computer Security Applications / P.K. Harmer, P.D. Williams, G.H. Gunsch, G.B. Lamont // IEEE Transactions on Evolutionary Computation. — June, 2002. — Vol. 6, N 3. — P. 252–280.
10. Wierzchon S.T. Generating Optimal Repertoire of Antibody Strings in an Artificial Immune System / S.T. Wierzcho // Symposium on Intelligent Information Systems IIS'2000: proceedings, 12–16 of June, 2000, Bystra, Poland. — Berlin-Heidelberg: Physica-Verlag, 2000. — P. 119–133.
11. Pike R. The Go Programming Language. Effective Go [Electronic resource]: specification / Rob Pike, Ken Thompson. — Reference: http://golang.org/doc/effective_go.html.
12. Евченко Л.Н. Анализ эффективности методов лечения на основе эвристического и нейро- сетевого подходов / Л.Н. Евченко, В.И. Кривенко, С.А. Субботин // Моделирование неравновес- ных систем – 2002: материалы семинара, октябрь 2002, Красноярск. — Красноярск: ИПЦ КГТУ, 2002. — С. 60–61.
13. Кривенко В.И. Нейросетевое моделирование суммарного показателя качества жизни больных хроническим обструктивным бронхитом в ассоциации с клиническими особенностями течения заболевания / В.И. Кривенко, Л.Н. Евченко, С.А. Субботин // Вестник новых медицинских технологий. — 2001. — Т. VIII, № 4. — С. 7–10.
14. Кривенко В.И. Нейросетевое моделирование показателя качества жизни для диспансерно- го учета пациентов / В.И. Кривенко, Л.Н. Евченко, С.А. Субботин // Моделирование неравновес- ных систем – 2001: материалы семинара, октябрь 2001, Красноярск. — Красноярск: ИВМ СО РАН, 2001. — С. 79–80.
File 1-7.pdf